SUSY-inspired one-dimensional transformation optics

نویسندگان

  • MOHAMMAD-ALI MIRI
  • MATTHIAS HEINRICH
  • DEMETRIOS N. CHRISTODOULIDES
چکیده

Transformation optics aims to identify artificial materials and structures with desired electromagnetic properties by means of pertinent coordinate transformations. In general, such schemes are meant to appropriately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and three dimensions. Here, we introduce a new class of one-dimensional optical transformations that exploits the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to synthesize photonic configurations with identical reflection and transmission characteristics, down to the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer. Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a given high-contrast structure that would have been otherwise beyond the reach of available materials and existing fabrication techniques. Similar strategies can also be adopted to replace negative-permittivity domains, thus averting unwanted optical losses. © 2014 Optical Society of America

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of nonlinear supersymmetry in one-dimensional Quantum Mechanics. I: general classification of reducibility and analysis of the third-order algebra

We study possible factorizations of supersymmetric (SUSY) transformations in the one-dimensional quantum mechanics into chains of elementary Darboux transformations with nonsingular coefficients. A classification of irreducible (almost) isospectral transformations and of related SUSY algebras is presented. The detailed analysis of SUSY algebras and isospectral operators is performed for the thi...

متن کامل

Hiding an elephant into a matchbox with transformation optics

Based on transformation optics‎, ‎we propose an illusion device that can make‎ ‎objects look much smaller and different than they actually are‎. ‎In particular‎, ‎the device has a capability to hide a large object (like an elephant) into a‎ ‎small one (like a matchbox)‎. ‎Compared to previous proposals for illusion‎ ‎devices‎, ‎there is no requirement for negative refractive index or for spee...

متن کامل

Fluid flow control with transformation media.

We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations-for an impermeable object placed either in a free-flowing fluid or in a fluid-filled ...

متن کامل

Factorization of non-linear supersymmetry in one-dimensional Quantum Mechanics. II: proofs of theorems on reducibility

In this paper, we continue to study factorization of supersymmetric (SUSY) transformations in one-dimensional Quantum Mechanics into chains of elementary Darboux transformations with nonsingular coefficients. We define the class of potentials that are invariant under the Darboux – Crum transformations and prove a number of lemmas and theorems substantiating the formulated formerly conjectures o...

متن کامل

Fully Off-shell Effective Action and its Supersymmetry in Matrix Theory

As a step toward clarification of the power of supersymmetry (SUSY) in Matrix theory, a complete calculation, including all the spin effects, is performed of the effective action of a probe D-particle, moving along an arbitrary trajectory in interaction with a large number of coincident source D-particles, at one loop at order 4 in the derivative expansion. Furthermore, exploiting the SUSY Ward...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014